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RATIONALIZATION OF GENERAL FORMULAS FOR ANGLE FACTORS
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General formulas are derived for the average angle factors of volumet-

ric and surface zones involving only a single fourfold integral, and
these formulas are therefore the most rational for numerical solutions,

Angle and radiation factors are found in approxima-

tion of integral radiant-energy transport equations by
a system of algebraic equations [1]; they are used ex-

tensively in engineering calculations and they occupy a
dominant position in zonal calculation; they are the sub-

ject of a special literature that is by no means com-
plete. If the symbols V and ¥ are used to denote, re-

spectively, the volume and surfaces of the system, the
average V-V and V-F coefficients are, in general, ex-

pressed in the form of sixfold and fivefold integrals.
By means of algebraic relationships these can always
be expressed in terms of coefficients of the F-F type,
i.e., in terms of fourfold integrals [2]. In this case,
there will be from two to four such integrals, calcu-
lated independently, in the formula. Here we have de-
rived an arbitrary type of coefficient involving only a
single fourfold integral. The rationalized formulas

assume a new meaning—the meaning of a set or the den-
sity of a set of beams, linkingthe elements of the zones,
at some arbitrary cross section. The angle-factor for-

mulas for two surface zones cannot be simplified and
are therefore not considered.

The attenuation (abhsorption and dissipation) capa-
city of the zonal segment i(a;) becomes important.
Figure 1 shows an arbitrary surface F, a number of
volumetric zones on either side, and a limiting sys-
tem of surfaces Iy and Fj. The ray passes through
element d¥. If it begins in this element, the quantity
a for the individual volumetric zones has the form

a4 =1—exp(—m),

a, = exp (—7y) (1 —exp(— 1)),

@; = €Xp ("(Tl + Tt ... 75—1)) (1 — eXp (_Ti))v (1)
@, =1 —exp{—m1,),

a, = exp (— ) (1 —exp(—1,)),

The quantity «; defines the probability that the quantum

energy emitted at point dF is attenuated (absorbed or
dissipated) in some direction on the segment 7; of
zone i. With the Kirchhoff law valid, the quantities a;
serve also as characteristics of radiation for zone i
passing through element dF

I= —E’—Bia[.
i

If we do not take into consideration all of the rays
which reach point d¥, but only those which continue

Fig. 1. Scheme of a chamber with
surface (Fy, Fj) and volumetric
zones (1,2,...,1i,b,c,...,§).

to zone j and are attenuated by that zone, their inten-
sity at point dF is given by

&
I =-;—B,-a‘a,~. (2)

i

For the rays reaching zone Fj through element dF

I= %Biag[l—(ab—}-ac—{- e, ()
i
etc.
The densities of the hemispherical flows at point

dF are expressed identically
g={ Icos8do. (4)
2n

Here as before [1, 3], angle factors are uniformly
denoted and defined for any zonal pair. An angle fac-
tor multiplied by the optical constant of the object of
irradiation is dimensionless and defines the probabil-
ity that the quantum of energy emitted by the zene of
the first index will reach the zone of the second index
directly (without interaction with elements of the sys-
tem) and will be absorbed there, if the optical con~
stant is the absorption coefficient. The probability
that the quantum of energy will be emitted by the ele~
ment dF within the solid angle dw through an angle ¢
is equal to cos 6 dw/m. The solid-angle integral of the
product of this quantity and a; defines the local angle
factor from point dF to zone i, multiplied by the at-
tenuation factor ki,

cosfdo
Eir, 1= j‘al . (5)
25

T

The quantity ng, ik;j (when 8 = 0) is the local absorp-
tion capacity of the volume [4]. The average angle fac-
tor from surface F to zone i is defined by

1
= ?j‘gﬁy‘.df‘. (6)
F
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The average angle factor from zone i to surface F is
defined according to the reciprocity relationship [1]

F Pr, = 4Viq’;, Fr (7
and thus according to (5)—(7),
Q, .= 1 dF \ a,cos0do (8)
B 4aVik, ! )
F 2R .

Volumetric zone j is situated on the other side of
surface F. From (8) we find the angle factor from
zone i to zone j, multiplied by kj, if the absorption
factor for element dF of the integrand (unity) is re~-
placed by a;

1

%kj:m; dFja,a,-cos@dm; (9)
F 2n

‘Pijkj defines the probability that the quantum of energy
emitted by zone i will reach zone j directly and will be
attenuated by that zone. Now it is not difficult to derive
the formulas for other coefficients. For example, the
coefficient from volumetric zone 1 to closed shell F.
bounding this zone is expressed by formula (8), in
which i should be replaced by the subscript 1. We de-
fine the coefficient for zone 1 from the relationship of
the latter closing on itself:

1
Puky = l—¢ =1— nVE, @dﬁ‘jalcosedm. (10)
F 2n

In special cases the integral can be simplified. For
example, for a cube it is enough to carry out the inte-

gration over a single face. The angle factor from zone -

i to surface FJ- is given by

1
q)iFjﬁ 4nViki SdFSaiX

F 2n

x[l—(ay+a,+ ... +a,~)]cosBdio.

(11)

Here we have used (3). It must be stipulated that F in-
tersect the entire set of rays linking the element of the
zonal pairs.

The quantity p defined from p = q/Q, may be re-
ferred to as the density. of the set of rays at point dF,
proceeding from zone i to the zone beyond element dF.
Here Q; = 4V;a;7B; isthe intensity of the self~-radiation
of zone i. Considering (4), S

p= —_—l——jllcosedm.
4n V,a,B, .
41

When the radiation passes to volumetric zone j (Fig. 1),
the quantity I is defined by (2) and then

S a,dj cosfdo.

T

o = 4nV .k,
2

The set of rays passing through F is found by inte-
gration:
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L j dFS‘a,-a,-cosedm. (12)

F n

Mll: 5!-“"7 =

The right-hand members of (9) and (12) coincide so
that gaijk- = Mji. The derivative of ‘Pijkj with respect
to F yields the set density P Thus the new, general
formula (9) and similar formulas assume a simple
meaning.

Formulas (8)—(11) and those similar to these are
easily generalized to the case of the effective radiation
of zone i with an arbitrary indicatrix, even for selec-
tive radiation. With selective radiation the formulas
retain their form, but the quantities a; and % must
have different expressions that are more complex
than (1). This problem requires special treatment.

Examples, Figure 2 shows a system of two volu-
metric zones i and j with spherical or cylindrical sym-
metry. The subscripts 1 and 2 denote the shells of the
zones. Surface 3 is a part of surface 2, supported by
the tangents to the latter, drawn from point dFy. In
view of symmetry, integration over F (here Fj) is
dropped. Formulas (8)—(11) are simplified:

Fy
o =——= | g,c080d o,
(PLFg 4ﬂV,-k,- 5‘ i ®
2%
F.
k= 2 a,a;cos8dw,
21
Q= 1— Fa a;cos8dw,
4ﬂVik1
m
Fy { 8d
(PiF1: 431'. Vik[ ai( "“aj)COS o,

2
where

a;= 1 —exp(—r;), a;=1—exp(—1).

In the following we use the radii multiplied by the
attenuation factor, which is assumed to be constant,
i.e., dimensionless radii r and R.

For spherical symmetry 7; = 2rcos ¢, T = (R* -
- r?gin?0)}/? — rcos 6, dw = 27 sin 6d6, Fy/Viki =
=3/r.

For cylindrical symmetry

cose
T; = 2r—
siny

’

V' RE—7*sine —rcose
- ‘ =
! siny

1/ 8% —sin*e — cose
siny

=Tr

’

do =sinydyde, cos0=sinycose, Fy/V ki =2/r.

References [5, 6] have been published on the sub-
ject of angle factors for a spherical system. Reference
[5], in which some of the gquantities have been tabu-
lated, is of greater interest here. But unlike this last
reference, we have carried out the integration to the
end for all of the coefficients. This yielded
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B = = [F@N— 1 +20), gk=1—q,
8 *
Wity = oy 2+ 1) — 1+ f(R—1)
—FR+ 1)+ (R— P Ey(R+ 1) —
— (R +rPE;(R—n),

. :é%[f(R+r)~f(R~r)+

(R +rPER—r—(R—rNE;(R4+1).

To obtain a complete solution, below we write the an-
gle factors for the surface zones

1
L [1—F(2R)),
Spa 11— 1 CR)

Vpur, = = F (VR =) —fR—1)+
2r

Prr, =

+ (R + P Ey(R— 1) — (R — ) Ey (VRE= 7).
However, if shell F; is opaque,

1 -
Pr,F, :"Eég‘ (1 “—f(2VR2_—r2)]-

For surfaces F; and F; (without surface Fy)

Prip,— “Q—R‘ [f(VR—Z———FZ) —~f(R4 1)+

+ (R —PE R+ —(R—r)E (V' RE 1Y)

1
2

_Table 1

Angle factors from a sphere (dimensionless
radius r) to spherical shell (dimensionless
radius ér). The zones are separated by a
spherical layer of a medium exhibiting thick-
ness (6 — 1)r. (Here and in Tables 2 and 3
the numbers after the decimal point are

shown.)
] 8
" I Los | 1.1 | 2 4
0.1 92354 ‘ 91619 ’ 82813 67436
0.5 68687 65962 | 39736 14235
1.0 49657 ] 45745 16563 02166
2 29370 . 24861 32565 00054
5 10690 | 07057 00042 | 0

The functions Ep(x) are used extensively in various

characteristics of radiation from a flat layer. For ex~
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ample, 2Ej3(x) defines the fraction of diffusely incident
radiation passed by a layer without interaction, and
this goes under the name "transmission" [7]. This

Fig. 2. Section of simplest
system of concentric and
coaxial zones.

same function with denotation si(x) is used in charac-
teristics of cylindrical systems [8]. Now the function
Ej(x) is found in the characteristics of spherical sys-
tems. Detailed tables are found in the literature only
for functions E(x). From the recursion formula

(n = 1)Ep(x) = exp(—x) — xEy-,(x) we can define the
functions E,, for any n in terms of Ey(x). However, it
is simpler to use approximate formula (9)

E;(x)= 0.2645exp{— 1.1612x) +
+0.2355 exp (— 2.942x).

We tabulated the coefficient ?iF, for spherical
symmetry, and OF ,F, and ?ij for cylindrical sym-
metry. Finally they assume the form

cose )]
- X
siny

]]cose de,

/2

@ik = lSSWY‘iY
xr
0

x[l~exp(——r
/2

4 .
Cr,p, = —j smzydyj %
b1
0

0

a2

el

0

V8% —sinfe —cose
siny

/2

V 62 —sin’e —cose
siny

xexp(——r )cosuis.

It is advisable here to include only certain values of
these quantities as control points for the programs
(Tables 1, 2, and 3). The quantities ‘Pijkj and ¢p oFy
have been derived by means of Gaussian quadratures
with five abscissas.

Table 2

Angle factors multiplied by the attenuation coefficient from an
infinite cylinder (dimensionless radius r) to an adjacent coaxial
cylindrical layer (dimensionless radius ér).

[)
r 1.05 , 1.1 | 1.2 I 1.5 I 2 | 3 ] @
0.1 0079 0154 0296 l 0683 1253 2228 8847
0.5 0247 0468 0868 | 1831 2974 4335 5960
1 0325 0605 1074 2064 2988 3751 407!
2 0362 0644 1066 1763 2179 2342 2364
5 0333 0533 07566 | 0958 0989 0992 0992
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Table 3
Angle factors for coaxial infinite cylindrical surfaces—from
the inside to the outside. Thedimensionless radiiare r and or.
)
’ 1.05 ‘ 1.1 l 1z | s | 2 | 2 | 3
0.1 99117 98313 96815 92775 86808 81419 76462
0.5 95698 91936 85290 69397 50511 37312 27789
1 91652 84699 73128 48966 26501 14777 08369
2 84224 72228 54358 25137 07726 02507 00836
5 66099 45992 23643 I 03879 00238 00016 00003
NOTATION 2, A. S. Nevskii, IFZh [Journal of Engineering

a;j is the attenuating ability of zone i in a certain di-
rection; «; ~3’ kd! is the dimensionless i~th section of

attenuation of aray; liis its length, m; k=a + 8 is
the attenuation factor, m™% o and B are the absorption
and scatterlng coefficients, m™"; B = ¢ T*/1; 0 = 5.58-
-1078 W/m? deg; T is the temperature, °K; I is the ra-
diation intensity, W/m? steradian; q is the dens1ty of a
hemispherical flow, W/m?; 6 is the angle between the
normal to a surface element dF and a ray; dw is the
element of a solid angle limiting a beam of rays; £ and
¢ are the local and mean angle factors; V and F are
the volume and surface; M and p are the set and den-
sity of the set of rays, connecting elements of two zones;
r and R are the dimensionless radii (radii multiplied
by attenuation factor; see Fig. 2); x is a dimensionless
argument; € isthe angle between the normal to surface
element d¥, and ray projection ontothe section of a two-
dimensional body; 7/2 —v is the angle between this
projection and the ray so that cos6 = siny cose.
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